
Finding Bounded Rational Equilibria

Part II: Alternative Lagrangians and

Uncountable Move Spaces

David H. Wolpert∗

June 9, 2005

Abstract

A long-running difficulty with conventional game theory has been how
to modify it to accommodate the bounded rationality characterizing all
real-world players. A recurring issue in statistical physics is how best to
approximate joint probability distributions with decoupled (and therefore
far more tractable) distributions. It has recently been shown that the
same information theoretic mathematical structure, known as Probability
Collectives (PC) underlies both issues. This relationship between statis-
tical physics and game theory allows techniques and insights from the
one field to be applied to the other. In particular, PC provides a formal
model-independent definition of the degree of rationality of a player and
of bounded rationality equilibria. This pair of papers extends previous
work on PC by introducing new computational approaches to effectively
find bounded rationality equilibria of common-interest (team) games.

1 INTRODUCTION

The fields of statistical physics, game theory, and distributed control/optimization
share one fundamental characteristic: they are all concerned with how the prob-
ability distribution governing a distributed system is related to the functionals
that it optimizes. This shared characteristic provides the basis for a mathe-
matical language for translating many of the concepts of those fields into one
another. This mathematical language is known as Probability Collectives (PC)
[1, 2, 3, 4, 5, 6]. By allowing us to transfer theory and techniques between those
fields, it provides a means of unifying them.

This pair of papers introduces computational techniques from PC for effi-
ciently finding bounded rational equilibria of noncooperative games. The first
paper starts with a review of PC and how to use it to formalize bounded ra-
tionality [7]. Also in that paper are a review of two of the previously explored

∗D. Wolpert is with NASA Ames Research Center, Moffett Field, CA, 94035
dhw@ptolemy.arc.nasa.gov

techniques for finding bounded rational equilibria, Brouwer updating and Near-
est Newton updating. After this that paper introduces iterative focusing, a new
set of techniques for finding full rationality equilibria.

Due to space limitations, several other schemes for finding bounded rational
equilibria could not be presented in that first paper. They are instead introduced
in this second paper. This second paper also shows how to extend all of the
approaches for finding equilibria (from both papers) to the case of uncountable
move spaces of the players. Some issues that arise in practice when running
these algorithms are also discussed here.

The version of Probability Collectives considered in this paper, involving
product distributions, is called “Product Distribution” (PD) theory[1]. It’s
important to note that PD theory also has many applications in science beyond
those considered in this paper. For example, see [3, 4, 8, 9, 10, 5, 6, 11] for
work concerning distributed control and to distributed optimization. See also
[12, 13, 10] for work showing, respectively, how to use PD theory to improve
Metropolis-Hastings sampling, how to relate it to the mechanism design work
in [14, 15, 16, 17], and how to extend it to continuous move spaces and time-
extended strategies.

Throughout these papers δ functions are either Dirac or Kronecker as ap-
propriate, integrals implicitly have a measure appropriate to the cardinality of
the underlying space, and Θ is the Heaviside step function.

2 Variations of Previous Schemes and Practical

Issues

In this section we first present some of the salient equations from [7] for com-
pleteness. We then show how to modify the Monte Carlo process used in parallel
Brouwer updating to avoid the “thrashing” problem. Next we present some al-
ternatives to Maxent Lagrangians for the case where the ultimate goal is finding
argminxG(x), i.e., when optimizing the game reduces to a minimization prob-
lem. We end with a discussion of issues that arise in practice.

2.1 Salient Equations

The “Maxent” or “qp” Lagrangian discussed in [7] is

L (q) ≡ β[Eq(G)− ε]− S(q)

= β[

∫

dx
∏

j

qj(xj)G(x)− ε]− S(q). (1)

We are interested in minimizing this functional over product distributions q,
and then iteratively lowering ε, i.e., raising β. This can be viewed as a barrier-
function (interior point) method with objective Eq(G), using an entropic barrier
function to enforce the constraints qi(xi) ≥ 0 ∀i, xi, with the constraint that all
qi sum being implicit.

This Lagrangian is minimized by product distribution q given by

qi(xi) ∝ e−Eq
−i

(G|xi). (2)

Steepest descent of the Maxent Lagrangian forms the basis of the Nearest New-
ton algorithm. Direct application of the equations that minimize the Lagrangian
form the basis of the Brouwer update rules. The “pq” Lagrangian is instead
minimized by the the product of the marginals of the Boltzmann distribution
pβ .

These update rules have analogues in conventional (non-PC) optimization.
For example Nearest Newton is based on Newton’s method, and Brouwer updat-
ing is similar to block-relaxation. This is one of the advantages of embedding the
original optimization problem involving x in a problem involving distributions
across x: It allows us to solve problems over non-Euclidean (e.g., countable)
spaces using the powerful methods already well-understood for optimization
over Euclidean spaces.

However there are other PC update rules that have no direct analogue in
such well-understood methods for Euclidean space optimization. For example,
the iterative focusing update rules described in [7] are intrinsically tied into the
fact that we’re minimizing (the distribution setting) an expectation value. This
ability to go beyond conventional optimization update rules is another advantage
of embedding the original optimization problem in a problem over a space of
probability distributions. Another advantage is the fact that the distribution
itself provides lots of useful information (e.g., sensitivity information). Yet
another advantage is the natual use of Monte Carlo techniques that arise with
the embedding, and allow the optimization to be used for adaptive control.

A subset of the update rules are described in [7], all of which can be writ-
ten as multiplicative updating of q. The following is a list of the update ratios
rqt,i(xi) ≡ qt+1

i (xi)/q
t
i(xi) of some of those rules. In all of these FG is a prob-

ability distribution over x that never increases between two x’s if G does (e.g.,
a Boltzmann distribution in G(x)). In addition const is always a scalar that
ensures the new distribution is properly normalized and α is a stepsize.1

Gradient descent of qp distance to FG:

1− α[
Eqt(ln[FG] | xi) + ln(qt

i(xi))

qt
i(xi)

]−
const

qt
i(xi)

(3)

Nearest Newton descent of qp distance to FG:

1− α[Eqt(ln[FG] | xi) + ln(qt
i(xi))]− const (4)

1As a practical matter, both Nearest Newton and gradient-based updating have to be
modified in a particular step if their step size is large enough so that they would otherwise
take one off the unit simplex. This changes the update ratio for that step. See [9].

Brouwer updating for qp distance to FG:

const×
eEqt (ln[FG] |xi)

qt
i(xi)

(5)

Importance sampling minimization of pq distance to FG(x):

const×Eqt(
FG

qt
| xi) (6)

Iterative focusing of q̃ with focusing function FG(x) using qp distance
and gradient descent:

1− α{
Eqt(ln[FG] | xi) + ln[

qt
i(xi)

q̃i(xi)
]

qt(xi)
} −

const

qt(xi)
(7)

Iterative focusing of q̃ with focusing function FG(x) using qp distance
and Nearest Newton:

1− α{Eqt(ln[FG] | xi) + ln[
qt
i(xi)

q̃i(xi)
]} − const (8)

Iterative focusing of q̃ with focusing function FG(x) using qp distance
and Brouwer updating:

const× eEqt (ln[FG] |xi) ×
q̃(xi)

qt
i(xi)

(9)

Iterative focusing of q̃ with focusing function FG(x) using pq distance:

const× Eq̃(FG | xi)×
q̃(xi)

qt
i(xi)

(10)

Note that some of these update ratios are themselves proper probability distri-
butions, e.g., the Nearest Newton update ratio.

2.2 Modifications to the Monte Carlo Process of Parallel

Brouwer

As described in [7], parallel Brouwer updating can be subject to “thrashing”,
in which each player’s update confounds the updates of the other players. The
simplest way to mitigate this is by not having each player i jump all the way
from its current distribution qi to the new one recommended by parallel Brouwer
updating, q∗i . Instead one can have each i only jump part way in the direction
from qi to q∗i . (This in fact is what is done in practice.) Another common way

to mitigate thrashing is to use data-aging. In this approach each conditional
expectation value in an update rule is replaced by a decaying average of its
previous values. This subsection presents an alternative approach.

To begin, note that we would not get any thrashing in parallel Brouwer if
rather than the function Eq(G | xi), each agent i performed its update using
Eπ(G | xi) for some fixed distribution π that is independent of both i and q. The
natural choice of π is exactly the distribution that q is designed to approximate
well, namely the Boltzmann distribution.2

To implement this modification, we need to have all agents i simultaneously
estimate their associated functions Eπ(G | xi) rather than Eq(G | xi). Precisely
because q should approximate π well, we can do this using our Monte Carlo
samples of q, simply by modifying how each agent uses those samples. The
general idea is to use those samples of q as a proposal distribution for generating
samples from π.

As an example, we can use the samples of q to estimate the integral Eπ(G |
xi) via importance sampling. To do this we write

Eπ(G | xi) =

∫

dx′−i [
π(xi,x

′

−i)

q(xi,x′−i
) G(xi, x

′
−i)]q(xi, x

′
−i)

∫

dx′−i [
π(xi,x′−i

)

q(xi,x′−i
)]q(xi, x′−i)

,

and then sample q, using empirical averages across those samples to estimate
both the quantity in the square brackets in the numerator of our integral and
the quantity in square brackets in the denominator. (Note that we only need to
know π up to an overall normalization constant to do this.) Under the original
sampling scheme, for each of its possible moves xi, agent i forms the uniform
average of the G values that arose when it made that move, and takes that
average as its estimate of Eq(G | xi). Under the modified scheme, it would
instead estimate the function Eπ(G | xi) with a weighted average of those G
values. The weights would be the associated values π(x)/q(x).3

Another way to estimate Eπ(G | xi) using samples generated from q would
be via a Metropolis random walk. Under this scheme q would be a proposal
distribution, and the points it generates would be kept either if they raised π(x),
or, if not, if the flip of an appropriately weighted coin comes up heads. At the
end of the Monte Carlo block, each agent i would form the uniform averages
over the kept points, thereby forming an estimate of its function Eπ(G | xi)

4.
This particular integration of parallel Brouwer and the Metropolis-Hastings

algorithm can be motivated other ways than as a modification to parallel Brouwer
updating. In particular, it can be motivated as a modification to the standard

2Note that in doing this, we change the equilibrium distribution from that of Eq. 2. Now
it is given by qi(xi) ∝ e−βEπ(G|xi)

3Note that these weights can be communicated to all the agents by the same system that
broadcasts G values to all the agents, if first all agents communicate qi values to that system.

4Ref. [12] presents a detailed analysis of the use of samples of a product distribution to
do Metropolis-Hastings sampling. That work does not directly concern the issue of optimiza-
tion. Rather it concentrates on using Probability Collectives to improve the usual goal of the
Metropolis-Hastings algorithm, namely sampling a provided probability distribution.

optimization algorithm of simulated annealing. This modification to simulated
annealing arises from the idea that one can have a Reinforcement Learning (RL)
[18] agent associated with each coordinate, and have each such agent choose the
sample values of the coordinate it controls. By giving the agents rewards based
on values of G(x), this should result in “intelligently” chosen sample points.
This is in contrast to the situation (as in the conventional simulated annealing
algorithm) where the sampling distribution is pre-fixed.

Now one common RL algorithm has its agent sample from its possible moves
according to a Boltzmann distribution across its expected rewards for those
moves. Recall that for us we’re having those rewards be the values of G(x).
So this common RL algorithm for an “intelligent” agent has that agent use the
Brouwer updating algorithm to set its distribution, and then samples from that
distribution. This is algorithmically identical to the scheme discussed above
for “integrating parallel Brouwer and the Metropolis-Hastings algorithm”. This
algorithm is the basis of the Intelligent Coordinates algorithm which experimen-
tally appears to far outperform simulated annealing [19].

2.3 Variants of Maxent Lagrangians

Consider the use of iterative update rules for the qi in concert with Monte Carlo
sampling of q. In such scenarios, at each stage of the iterative updating, for each
of her moves xi, each player i has an empirical estimate of the distribution P (G |
xi) (and therefore of any distribution P (f(G) | xi) for invertible f : R → R).
Every player i uses her empirical estimate according to a pre-set algorithm —
potentially varying from one player to the next — to determine how to update
her distribution qi. Our task as system designers is to choose those pre-set
algorithms in such a way that the ultimate goal of the updating is achieved as
quickly as possible.

In the update rules discussed above each empirical distribution is reduced
to an expectation value which is then used to perform the update. While this
need not be the case in general, update rules based on expectation values form a
very rich set, including many rules not investigated previously. This subsection
introduces some such novel update rules that are based on expectation values.

Both the qp-KL Lagrangian and pq-KL Lagrangians discussed above had
the target distribution be a Boltzmann distribution over G. For high enough
β, such a distribution is peaked near argminxG(x). So sampling an accurate
approximation to it should give an x with low G, if β is large enough. This
is why one way to minimize G is to iteratively find a q that approximates the
Boltzmann distribution, for higher and higher β.

However there are other target distributions that grow larger as G grows
smaller e.g., logistic functions of G, step functions (i.e., Heaviside functions) of
G, etc. So one set of alternatives to the Lagrangians discussed above is to choose
some alternative target distribution(s), and for each one find the q minimizing
pq or qp KL distance to it.

Return now to the Maxent Lagrangian. Say that after finding the q that
minimizes the Lagrangian, we IID sample that q, K times. We then take the

sample that has the smallest G value as our guess for the x that minimizes G(x).
For this to give a low x we don’t need the mean of the distribution q(G) to be
low — what we need is for the bottom tail of that distribution to be low. This
suggests that in the E(G) term of the Maxent Lagrangian we replace

q(x) ← q(x)
Θ[κ−

∫

dx′ q(x′)Θ[G(x)−G(x′)]]

κ
. (11)

The new q for Eq(G) given by Eq. 11 is still a probability distribution over x.
It equals 0 if G(x) is in the worst 1− κ percentile (according to distribution q)
of G values, and κ−1 otherwise. So under this replacement the E(G) term in
the Lagrangian equals the average of G restricted to that lower κ’th percentile.
For κ = K−1, our new Lagrangian forces attention in setting q on that outlier
likely to come out of the K-fold sampling of q(G).5

As usual, one can use gradient descent and Monte Carlo sampling to min-
imize this Lagrangian, taking care to account for q’s now appearing twice in
the integrand of the E(G) term. Note that the Monte Carlo process includes

sampling the probability distribution
Θ[κ−

R

dx′ q(x′)Θ[G(x)−G(x′)]]
κ as well as the

qi. This means that only those points in the best κ’th percentile are kept, and
used for all Monte Carlo estimates. This may cause greater noise in the Monte
Carlo sampling than would be the case for κ = 1.

As an example, say that for agent i, all of its moves have the same value of
E(G | xi), and similarly for agent j, and say that G is optimal if agents i and j
both make move 0. Then if we modify the updating so that agent i only considers
the best values that arose when it made move 0, and similarly for agent j, then
both will be steered to prefer to make move 0 to their alternatives. This will
cause them to coordinate their moves in a way that improves the Lagrangian.

A similar modification is to replace G with f(G) in the Maxent Lagrangian,
for some monotonically increasing function f(.). This would distort G to ac-
centuate those x’s with good values. Intuitively, this will have the effect of
coordinating the updates of the separate qi at the end of the block, in a way
to help lower G. The price paid for this is that there may be more variance in
the values of f(G) returned by the Monte Carlo sampling than those of G, in
general.6

Note that if q is a local minimum of the Lagrangian for G, in general it
will not be a local minimum for the Lagrangian of f(G) (the gradient will no
longer be zero under that replacement, in general). So we can replace G with
f(G) when we get stuck in a local minimum, and then return to G once q gets

5This algorithm should be contrasted to iterative focusing, where (in one version) we solve
for the new distribution closest to the q given by Eq. 11, whereas here we directly insert that
new q into the Eq(G) component of the Maxent Lagrangian.

6Write γ for the value of E(G) at the moment we replace G → f(G). Then it may make
sense to require that E(G) ≤ γ even after the replacement. This could be done in the usual
way by adding a term α[E(G) − γ] to the Lagrangian. The Lagrange parameter α would
initially equal 0, and then get updated by gradient ascent on the Lagrangian periodically. So
it would periodically get increased by an amount proportional to the violation factor E(G)−γ,
thereby “annealing in” our constraint.

away from that local minimum. In this way we can break out of local minima,
without facing the penalty of extra variance. Of course, none of these advantages
in replacing G with f(G) hold for algorithms that directly search for an x giving
a good G(x) value; x is a local minimum of G(x) ⇔ x is a local minimum of
f(G(x)).

An even simpler modification to the E(G) term than those considered above
is to replace G(x) with Θ[G(x) − K]. Under this replacement the E(G) term
becomes the probability that G(x) > K. So minimizing it will push q to x with
lower G values. For this modified Lagrangian, the gradient descent update step
adds the following to each qi(xi):

α
[

βq(G < K | xi) + ln(qi(xi)) −

∑

x′
i
βq(G < K | x′i) + ln(qi(x

′
i))

∑

x′
i
1

]

.

(12)

In gradient descent of the Maxent Lagrangian we must Monte Carlo estimate
the expected value of a real number (G). In contrast, in gradient descent of this
modified Lagrangian we Monte Carlo estimate the expected value of a single bit:
whether G exceeds K. Accordingly, the noise in the Monte Carlo estimation for
this modified Lagrangian is usually far smaller. In addition, just like in descent
of the Maxent Lagrangian, the Monte Carlo estimation for Eq. 12 is well-suited
to a distributed implementation.

In all these variants it may make sense to replace the Heaviside function
with a logistic function or an exponential. In addition, in all of them the an-
nealing schedule for K can be set by periodically searching for the K that is
(estimated to be) optimal, just as one searches for optimal coordinate systems
[2, 1]. Alternatively, a simple heuristic is to have K at the end of each block be
set so that some pre-fixed percentage of the sampled points in the block go into
our calculation of how to update q.

Yet another possibility is to replace E(G) with the κ’th percentile G value,
i.e., with the K such that

∫

dx′ q(x′)Θ(G(x′) − K) = κ. (To evaluate the
partial derivative of that K with respect a particular qi(xi) one must use implicit
differentiation.)

2.4 Heuristics for improving the update rules

There are a number of practical issues common to all the schemes elaborated
above. The update rules given above are all completely distributed, in the sense
that each agent’s update at time t is independent of any other agents’ update
at that time. Typically at any t each agent i knows qi(t) exactly, and therefore
knows ln[qi(j)]. However those update rules all involve conditional expectation
values which often cannot be evaluated in closed form. As described above, one
can circumvent this problem by having the expectation values be simultaneously
estimated by all agents via repeated Monte Carlo sampling of q to produce a
set of (x,G(x)) pairs. Those pairs are used by each agent i to estimate the

expectation values it needs (e.g., E(G | xi = j)), and therefore how to update
its distribution.

Consider the case where we do need to use Monte Carlo to estimate condi-
tional expected values of some f(x), and x is high-dimensional. In this scenario
block-wise Monte Carlo sampling to estimate conditional expectation values can
be slow. The estimates typically have high variance, and therefore require large
block size L to get an accurate estimate.

One set of ways to address this is to replace the team game with a non-
team game, i.e., for each agent i have it estimate quantities based on a private
utility gi rather than G (e.g., based on E(gi | xi = j) rather than E(G | xi = j)
7. Each such private utility is chosen so that the Monte Carlo estimates have
much lower variance than those based on G, without having any bias [1, 13].

As an example, say we are doing gradient descent of the Maxent Lagrangian.
Replace the values of G(x) recorded by agent i in the Monte Carlo process with
the values of gi(x) = G(x)−D(x−i), where D(x−i) ∝

∫

dx′i w(x′i)G(x′i, x−i) for
weighting factors wi determined by how frequently x′i arose in the Monte Carlo
process. This replacement speeds the convergence of the Monte Carlo process
to accurate estimates of the true expectation values E(G | xi) [1]. Furthermore
it can often be done with minimal communication overhead between the agents.
Indeed, often it is easier to evaluate such a gi(x) than G(x). The worst case is
where G(x′i, x−i) must be explicitly re-evaluated for each of the possible x′i. Even
there though, those extra re-evaluations are often not a large extra expense. This
is because they can be used to augment the Monte Carlo samples of values of
gi(x

∗
i) for x∗i 6= xi as well as those for x∗i = xi.
Another useful technique is to allow samples from preceding blocks to be

re-used. One does this by first “aging” that data to reflect the fact that it
was formed under a different q−i . For example, one can replace the empirical
average for the most recent block k,

Ĝi,j(k) ≡

∑kL+L
t=kL G(xt)δxt

i
,j

∑kL+L
t=kL δxt

i
,j

,

with a weighted average of previous expected G’s,

∑

m Ĝi,j(m)e−κ(k−m)

∑

m e−κ(k−m)

for some appropriate aging constant κ.8

7Formally, this means that each agent i has a separate Lagrangian, for example formed
from the Maxent Lagrangian by substituting gi for G. See [2] for the relation of this to
bounded rational game theory.

8Not all preceding Ĝi,j(m) need to be stored to implement this; exponential ageing can
be done online using 3 variables per (i, j) pair. Say agent i has just made a particular move,
getting cost r, and that the most recent previous time it made that time was T iterations
ago. Then the new estimated cost for that move, E′, is related to the previous one, E, by

E′ = r+kT Ea

1+kT a
, where k is a constant less than 1, and a is initially set to 1, while itself also

Typically such ageing allows L to be vastly reduced, and therefore the overall
minimization of L to be greatly sped up. For such small L though, it may be
that the most recent block has no samples of some move xi = j. This would
mean that Ĝi,j(k) is undefined. One crude way to avoid such problems is to
simply force a set of samples of each such move if they don’t occur of their own
accord, being careful to have the x−i formed by sampling q−i when forming
those forced samples.

There are numerous other techniques that are useful in practice. For ex-
ample, typically one must use such techniques to decrease the step size in the
descent rules (i.e., gradient descent and Nearest Newton) as one nears the bor-
der of Q. Similarly, often the non-descent update rules (e.g., Brouwer) can be
improved by making only a partial “step” at each iteration, i.e., by averaging
the current q with the q given by the update rule as listed above, rather than
by replacing it with that q.

3 Empty bins, uncountable x

There are several circumstances in which naive empirical averaging of Monte
Carlo samples to estimate update terms of the form E(FG | xi) will not work.
For example, consider the simplest situation, in which we have a finite number
of agents and a finite move space for each agent. Even in this situation, if there
are not enough Monte Carlo samples, it may be that for some potential move
of some agent there are no instances in any of the Monte Carlo samples (in any
of the blocks) in which that agent made that move. In that case, we cannot use
empirical averaging to estimate the associated E(FG | xi). As another example,
say we have a large (but finite) number of Monte Carlo samples, but some agent
has an uncountable number of potential moves. Then that agent will have no
samples for almost all of its potential moves.

3.1 Exploiting Supervised Learning

All of these problems can be addressed by exploiting the fact that we are working
with a product distribution, in concert with the techniques from the field of
supervised learning techniques (i.e., classification and regression) [20], which
concern precisely the issue of estimating E(FG | xi) from a finite set of Monte
Carlo samples. As an example, consider the first problem case mentioned above,
in which there a finite number of agents all with a finite number of potential
moves, but we have too small a set of Monte Carlo samples to have samples of
all moves for all agents. For this scenario each agent i must estimate E(FG | xi)
for all xi using a “training set” of Monte-Carlo-generated (xi, FG) pairs that
does not extend over all xi. This is a standard problem in supervised learning
[20]. Often it can be addressed by extrapolating from those xi which did occur

being updated according to a += kT . So agent i only needs to keep a running tally of E, a,
and T for each of its possible moves to use data-aging, rather than a tally of all historical
time-cost pairs.

in the training set to infer estimates of E(FG | xi) for the xi that did not.
Those estimates can then be used to form the updates for those non-arising xi.
The simplest version of such a scheme is to set E(FG | xi) for an unsampled
xi to the average of the FG values in the training set.9 However often more
sophisticated schemes can be used, based upon prior knowledge concerning the
likely dependence of E(FG | xi) on xi.

10

Similar techniques can be used even when the xi are uncountable. Moreover,
in general a supervised learning fit to the Monte Carlo data is parameterized by
a finite set of numbers, and therefore for a finite number of agents those fits can
be stored in a finite computer, regardless of the cardinality of the move spaces
of the agents. However for uncountable move spaces we have the extra problem
of how to store, update, and sample q, which is now a density function rather
than a probability distribution.

Fortunately, given the regression E(FG | xi), there are several ways to update
and sample q(x) without ever explicitly storing the values of q(x) for all possible
x. By using such sampling schemes in concert with the regression scheme, we can
implement Monte Carlo updating for all of the problematic scenarios described
above. As outlined in this section, the key is to write the update rules in terms
of multiplicative update ratios giving the new q in terms of the old one, as in
the list presented above.

3.2 Uncountable x and finite parameterizations of q

For all of these update rules listed above, when xi is a compact subset of a
Euclidean space, one can still numerically perform the update in the conven-
tional way if the associated probability density function is replaced by a (finite-
dimensional) paramaterization of it. The simplest way to do that is, in essence,
by binning xi. This means that agent i now has a finite set of moves, one for each
of its bins. The full density function is parameterized by the real numbers giving
the probabilities agent i assigns to each of its bins, according to some pre-set
rule. One example is where the probability density function has uniform density
in each bin (as in Reimann integration). Another is where the density function
is linearly increasing/decreasing across each bin, in such a way that the density
function is everywhere continuous (as in the trapezoidal rule for integration).
Formally, such binning schemes are semi-coordinate transformations [10, 6].

With such a scheme, one first applies supervised learning techniques to the
Monte Carlo samples to determine the regression E(FG | xi). For each bin j,
having borders aj and bj , one then numerically computes two integrals:

∫ bj

aj

dxi qt
i(xi)E(FG | xi) and

∫ bj

aj

dxi qt
i(xi).

9In gradient descent updating this means that qi(xi) for an unsampled xi does not change
at the update step.

10In such scenarios the data in the training set should not only be used to form estimates
of E(FG | xi) for those xi that don’t occur in the training set; it should also be used to refine
our estimates for those xi values that do occur in the training set.

The ratio of those two integrals determines the time-t expected value of FG

conditioned on xi being in bin j. (For bins that are thin enough on the scale
of variations in the regression and/or qt

i(xi), these integrations can be replaced
by simply evaluating the integrands at the centers of the bins.) This then gives
the expected FG conditioned on xi being in bin j for all bins j. This is precisely
what is needed to update those bins’ probabilities, according to whichever of
the update rules listed above one is using.

Note that this scheme can be done even when the number of bins is far
larger than the number of Monte Carlo samples. This contrasts with the case
of estimating the conditional expectation value of FG given bin j based only
on averaging of all the Monte carlo samples that fall in that bin. Intuitively,
using regression allows samples from neighboring bins to be used to help form
the estimate.

While some binning schemes can be relatively sophisticated [10], sometimes
it would be advantageous to use a different parameterization. Often this can
be done in a way that replaces the regression algorithm with a density estima-
tion algorithm, using the usual Bayesian equivalence of regression and density
estimation. For example, choose the masking function FG(x) in Eq. 10 to be
Θ(K−G(x)), Evaluating such an update based on a set of Monte Carlo samples
can be done with conventional probability density estimation algorithms [20].
One simply collects the subset of the samples for which G(x) < K, and runs
the density estimation algorithm on those points to estimate the density at xi.

Intuitively, in this approach the Monte Carlo samples encode the probability
density function qi. For a smooth density estimator, this scheme will also ensure
qi(xi) 6= 0 ∀xi, thereby mitigating the problem that a statistical fluctuation of
never picking xi in some Monte Carlo block would guarantee it is never picked
in the future. Similar schemes can be used for non-step function choices of FG.
For example, one can use the value FG(x) for each x in the Monte Carlo sample
as a weighting factor for that sample in a kernel density estimator.

3.3 Parameterless sampling via Sample Correction

One problem with parametric schemes like these is that since q is given by a
set of explicitly stored real numbers, one is always limited in how finely one can
capture q by the finiteness of one’s computer’s memory. More importantly, if
one has many parameters (to capture q with high accuracy), then updates can
be computationally expensive, since each parameter has to be updated in each
iteration. For example, with binning, one has to go through the update rule for
each bin.

Alternative schemes use the regression E(FG | xi) to apply any multiplicative
update rule for uncountable x without any finite-dimensional parameterization
of q. With such schemes, in each step the full density function given by an
uncountable number of real numbers is implicitly updated (e.g., via gradient
descent). However that density is never explicitly represented. Instead, all
we ever explicitly do is sample it, potentially evaluating it at a finite number
of points to do so. Intuitively, via our regression, the Monte Carlo samples

themselves serve as our “parameterization” of q(x).
Define Rq,i ≡ maxxi

rq,i(xi). Then for any t > 1 we can generate a sample
from qt

i if we can implement the following three-step sample-correcting proce-
dure based on subsampling:

1) Sample from qt−1
i to get a point xi.

2) Toss a coin with probability of heads

rqt−1,i(xi)

Rqt−1,i

. (13)

(The reason for dividing by Rqt−1,i is to ensure this probability of heads never
exceeds 1.)

3) If the coin came up heads, keep our xi as the desired sample of qt
i . Otherwise

return to (1).11

Note that this scheme will also work if we can only evaluate the values
rqt−1,i(xi) up to an overall proportionality constant, so long as Rqt−1,i is rede-
fined to include that constant. Similarly the scheme will work so long as Rqt−1,i

in step (2) is replaced by any fixed quantity that is bounded below by the actual
Rqt−1,i. So in practice we can set that value in step (2) to some small factor
greater than 1 multiplied by the maximal value of over some set of values x′i
of rqt−1,i(x

′
i). Accordingly we can sample qt if we can sample qt−1, can evalu-

ate A × rqt−1,i(xi) for any particular xi and fixed (though perhaps unknown)
constant A, and can evaluate an upper bound on A×Rqt−1,i.

Performing this subsampling procedure for all agents will give us a sample of
the joint distribution qt. We then add that joint sample to the training set and
form a new regression (to be able to calculate rqt,i(xi)). If we need to do so to
ensure the quantity in step (2) never exceeds 1, we then use that new regression
to find an upper bound on Rqt,i. This allows us to repeat the three steps, and
thereby form the next update to q. Generalizing, if we set q1 to some easily
sampled distribution (e.g., the uniform distribution), and can always perform
the stipulated regressions, then with our subsampling procedure we have an
iterative algorithm for sampling qt(x) =

∏

i qt
i(x) for all t. Then, at the end

of the run, we use the final joint samples as guesses for the solution x to our
optimization problem.

Say we are at iteration t, having formed samples of all of the qt′

i for t′ < t via
the subsampling procedure, and therefore having been able to evaluate Rqt′ ,i

and rqt′ ,i(xi) for any xi, t
′ < t. To employ the precise scheme outlined above

to sample qt
i we would first sample q1

i , and then send that sample through t

11This is essentially importance sampling. Formally, since this three-step sub-sampling
scheme is a stochastic process, it generates xi’s according to some distribution π(xi). So to

prove that π = qt
i , it suffices to note that for any two values xi, x

′
i,

π(xi)
π(x′

i
)

=
qt

i (xi)

qt
i
(x′

i
)
. QED

successive stochastic keep/reject steps. The probability of a rejection at each

step in that chain is given by how small the ratio
r

qt−1,i
(xi)

R
qt−1,i

is for typical xi

generated by sampling q1
i . For large enough t, even if the rejection probability

for each step in the chain is small, the probability of a rejection somewhere
along such a chain — followed by starting all over with a new sample of q1

i —
may be quite high. Accordingly, this subsampling procedure might take a long
time to actually generate the desired sample of qt

i .
As an alternative, note that by hypothesis we can evaluate rqt′ ,i(xi) ∀xi, t′ <

t, up to a t′-dependent overall proportionality constant, which without loss of
generality we set to 1. So write

qt
i(xi) = q1

i (xi)

t−1
∏

t′=1

rqt′ ,i(xi)

As long as we are sure that the product on the righthand side is finite and never
negative, we can employ a modified version of our sub-sampling procedure. To
do this define

ci({q
t′ : t′ < t}, xi) ≡

t−1
∏

t′=1

rqt′ ,i(xi). (14)

Assuming we can evaluate rqt′ ,i(xi) ∀, xi, t
′ < t, we can evaluate ci({q

t′ : t′ <
t}, xi) ∀xi. Next define

Ci({q
t′ : t′ < t}) ≡ maxxi

ci({q
t′ : t′ < t}, xi). (15)

In analogy to the earlier case, we can form an estimate of a (conservative lower
bound) on Ci({q

t′ : t′ < t}) by evaluating ci({q
t′ : t′ < t}, xi) for many xi.

As before, the first step of our procedure is to sample q1
i to produce a sug-

gested sample of qt
i . We then accept that suggested sample with probability

ci({q
t′ : t′ < t}, xi)

Ci({qt′ : t′ < t})
,

resampling q1
i if we reject the suggested sample. This gives us our desired sample

of qt
i(xi). Doing this for all i then gives our sample of qt(x).
Exactly as before, such a sample of qt can be combined with our previous

Monte Carlo samples to provide a training set for a supervised learning algo-
rithm that forms a regression Eqt(FG | xi). We can use that to evaluate rqt,i(xi)
for any xi, up to an overall proportionality constant. So we can evaluate the
product ci({q

t′ : t′ < t + 1}, xi) for a large number of xi, and thereby estimate
(an upper bound on) Ci({q

t′ : t′ < t}). This then allows us to generate a sam-
ple of the next distribution qt+1 by using subsampling. So we again have an
iterative algorithm. However this way one avoids the need for more than one
keep/reject step in forming the sample of qt for any t. (The price paid for this
is a more expensive numerical evaluation of the associated max.)

3.4 Including density estimation

A remaining potential difficulty is that as qt
i gets more and more peaked, we

might get a lot of rejections when we subsample, since the ratio ci({qt′ :t′<t},xi)

Ci({qt′ :t′<t})

will be very small for almost every point formed by sampling q1
i . More gen-

erally, if we are only generating candidate xi by examining points generated
by sampling q1

i , then we won’t have reduced the overall computational burden
in finding x with low G values compared to the simple process of sampling q1

i

without any subsequent subsampling.
We can address this problem by periodically using a density estimation al-

gorithm to produce an estimate of the current distribution, an estimate that is
easy to sample. However we don’t directly use that estimate in our algorithm
in place of qt

i , since it won’t exactly equal qt
i in general. Instead, we use it

as a proposal distribution in importance sampling from qt
i . In essence, we use

the same keep-reject procedure as before, only with a non-uniform distribution
generating samples, and doing so after q has already started evolving.

More precisely, at time step t, say we run a density estimation algorithm
on our Monte Carlo samples to form a density q̂t

i(xi) that both can be easily
sampled and with high probability is a good approximation to qt

i . Write

qt′′

i (xi) ∝ q̂t
i(xi) di({q

t′ : t′ < t′′}, q̂t
i , xi) (16)

where

di({q
t′ : t′ < t′′}, q̂t

i , xi) ≡
q1
i (xi)ci({q

t′ : t′ < t′′}, xi)

q̂t
i(xi)

. (17)

Then define

Di({q
t′ : t′ < t′′}, q̂t

i , i) ≡ maxxi
di({q

t′ : t′ < t′′}, q̂t
i , xi). (18)

As usual, without loss of generality we can ignore any overall proportionality
constants in the evaluations of q̂t

i(xi) and/or ci({q
t′ : t′ < t′′}, xi) (so long as

the same constants appear in the evaluation of Di({q
t′ : t′ < t′′}, q̂t

i , i)), and can

replace the constant Di({q
t′ : t′ < t′′}, q̂t

i , i) with an upper bound on it.
In the first step of the new version of our subsampling procedure — when

we want to generate a sample of qt+1
i (xi) — we start by generating a sample of

q̂t
i(xi). (In the original subsampling procedure the analogous step was to sample

q1(xi).) We then keep that sample with probability

di({q
t′ : t′ < t + 1}, q̂t

i , xi)

Di({qt′ : t′ < t + 1}, q̂t
i , i)

,

forming a new sample if the suggested sample is rejected. In this way we can
exactly sample the density function qt

i(xi). Moreover, assuming our density

estimate is reasonably accurate, and that our upper bound on Di({q
t′ : t′ <

t + 1}, q̂t
i , i) is not too much greater than the actual value, the ratio giving our

acceptance frequency will not be too small. We then proceed analogously for
times t′′ > t + 1.

In practice, we may want to exploit algorithms that combine the genera-
tion of q̂t

i from the training set and the sampling of that distribution. As an
illustration, say xi is the set of real numbers between 0.0 and 1.0, and write
the cumulative distribution function of qt

i as CDFqt
i
. Then one way to form a

sample of qt
i(xi) is to generate a point ξi by uniformly sampling [0.0, 1.0], and

then return the value [CDFqt
i
]−1(ξi). This suggests an algorithm in which we

first use our training set of Monte Carlo samples to form ˆCDF qt
i
, an estimate

of CDFqt
i
. We then sample [0.0, 1.0] uniformly to produce ξi, and return the

value [ˆCDF qt
i
]−1(ξi).

As an example of a rough, fast way to do this, say there are N separate
xi values in our training set, the set of those values being written as {xj

i}.

Define I(xj
i) as the interval of all real numbers that are closer to xj

i than to
any other training set element. Also define the function int(xi) as the greatest
integer below xi. So if ξi is a real number chosen by randomly sampling (0,
1.0), int(Nξi) + 1 is a uniformly random choice of one of the N elements of the
tranining set. Using this, our algorithm for sampling (an estimate of) qt

i(xi)
would consist of the following steps:

A) Sample [0.0, 1.0] uniformly to generate ξi, and then set j ≡ int(Nξi) + 1.

B) Sample uniformly from within the interval I(xj
i).

Intuitively, under this scheme the density estimate we sample is uniform within
each interval I(xj

i) (one such interval for each j). The value of the estimate in

each interval I(xj
i) (one such interval for each j) is proportional to the inverse of

the width of the interval, |I(xj
i)|, with the same proportionality constant for all

intervals. So where training set elements are dense, interval widths are small,
and density estimates are large. Similar schemes can be used when xi is more
than one-dimensional, for example by substituting Voronoi cells about training
set xi values for intervals about them.

Note that we actually have far more information about the underlying den-
sity to use in forming our estimate than just the xi values in the data set: we
have the associated values of the actual density at those points, {qi(xi)}. Indeed,
one could imagine forming our density estimate without using a conventional
unsupervised learning density estimator at all, but instead a supervised learn-
ing regression scheme. Such a scheme would form an xi → qi(xi) “fit” to the
{(xi, qi(xi)} pairs comprising our data set, constraining the fit to be nowhere
negative and integrate to 1. However using regression this way also doesn’t fully
exploit our information: it ignores the fact that the positions {xi} were formed
by sampling qi.

A proper Bayesian approach would exploit both sets of information. However
there are alternative, less formal ways to exploit both sets of information. An
example is a modification of the (A-B) algorithm presented just above. In this

modification we still have our density estimate be constant within each interval
I(xj

i), but change the value of that estimate to incorporate the (known) density

value at xj
i , qi(x

j
i). Then rather than have the density within each interval I(xj

i)

proportional to 1/|I(xj
i)|, we set it to be proportional to

√

qi(x
j
i)/|I(xj

i)|. (The

square root is motivated by considering what happens if qi(xi) is multiplied by
some constant k across a certain region, which would mean that the training set
elements will, on average, be spaced k times more densely in that region.) A

similar modification would instead replace 1/|I(xj
i)| with

1/|I(xj
i
)|+qi(x

j
i
)

2 . Note
that in either modification we must solve for the proportionality constant, unlike
in the original scheme. This is straight-forward however.

Say we are able to sample qt
i(xi) exactly, either by using subsampling of

points generated from q1
i or by using a density estimate q̂t

i . Then we can
use the original subsampling procedure recounted above to sample qt+1

i (xi) =
qt
i(xi)rqt,i(x). Similarly, to sample qT

i (xi) for subsequent T > t + 1, we can
use the modified version of the subsampling procedure based on a product
of rqt′ ,i(xi)’s. In the current context, this means we sample qt

i(xi), and then
keep/reject those samples according to the ratios

ci({q
t′ : t < t′ < T}, xi)

Ci({qt′ : t < t′ < T})
.

Once T is so much larger than t that we start getting a lot of rejections, we can
rerun our density estimation algorithm.

Finally, while we lose formal bounds in doing so, we may elect not to use
ci’s that reflect products of ri’s all the way from time 1. Say we make a density
estimate at some time, and it is a particulary accurate one. Then we may want
to start the entire subsampling procedure afresh, using that density estimate
rather than the uniform distribution as our initial distribution. This would
mean that each ci only reflects the product of ri’s for the times since that
most recent density estimate. In essence, in this variant, all of our work up to
the formation of that most recent density estimate was simply a procedure for
finding a starting distribution for the sample correction algorithm, a starting
distribution that (hopefully) has a low value of our Lagrangian.

3.5 Performing the needed evaluations

Say we are at the t’th iteration, and assume we already have a full Monte Carlo
sample of qt−1. We need to be able to evaluate rqt−1,i(xi) to form a sample
of qt using our subsampling procedure. We can do this for any of the update
rules listed above, so long as can calculate ln(qt−1

i (xi)), Eqt−1(ln(FG) | xi),

Eqt−1(ln(FG)), S(qt−1
i),

∫

dxi Eqt−1(ln(FG) | xi), and
∫

dxi ln(qt−1
i (xi)). The

first two of these depend on xi, and the last four are averages over all xi.
12

12Those last four arise in calculating the additive const term in one or the other of the
update rules, and where needed implicitly assume a priori bounds on their integrals. Note
that any multiplicative const terms are irrelevant, since as described above they cancel out in
the subsampling.

All of these terms have to be calculated to update q even if one doesn’t use
subsampling. In particular this is the case if one converts a scenario of infinite
x’s into one where each agent has a finite number of moves by dividing the
range of each xi into a large number of bins, and then uses conventional (non-
subsampling) PC. The difference is that with subsampling we cannot just look
up qi(xi) values.13

We can perform our needed evaluations as follows:

i) We can evaluate qt−1
i (xi) ∀xi by direct expansion. It is a product of the

values of rqt′ ,i(xi) for t′ < t with the value of a starting density at xi, and by
the inductive hypothesis we can evaluate all of those values. That takes care of
the first term.

ii) As usual, to estimate Eqt−1(ln(FG) | xi), apply any handy supervised learning
algorithm (e.g., Gaussian nearest neighbor averaging) to the training set of
(xi, ln(FG(x))) pairs given by the Monte Carlo samples of qt−1.

iii) Given our supervised learning algorithm, use numerical integration to esti-
mate

∫

dxi Eqt−1(ln(FG) | xi). In practice, if the integrand is quite peaked, it
may make sense to assist the integration by first using a density estimation al-
gorithm to form an easily sampled estimate of qt

i(xi). Numerical integration via
importance sampling can then be used with that estimate as the proposal dis-
tribution to do the integration. Assuming the peaks of qt

i(xi) roughly matches
those of Eqt−1(ln(FG) | xi), such integration should be relatively efficient.

Given our assumed ability to evaluate qt−1
i (xi) ∀xi, we can similarly use our

supervised learning algorithm and numerical integration to estimate Eqt−1(ln(FG)),
again using density estimation if need be. Alternatively, we can estimate Eqt−1(ln(FG))
simply by averaging the values in the training set of ln(FG) .14

iv) Similarly, we can use numerical integration to estimate
∫

dxi ln(qt−1
i (xi))

and/or S(qt−1
i). A simpler approach to estimating the entropy, analogous to the

averaging process of step (iii), is to simply estimate the entropy as the empirical
average of the values of ln[qi(xi)] over the Monte Carlo samples. Similarly,
an importance-sample estimation of

∫

dxi ln(qt−1
i (xi)) would be given by the

empirical average of the values of (ln[qi(xi)])/qi(xi).

Doing all this, we can evaluate every term that arises in our subsampling
procedure. This allows us to sample qt. For the next iteration, this ability to
sample qt is used again, this time to do part (1) of the subsampling procedure
for generating samples of qt+1. To perform parts (2) and (3) we need to evaluate

13An additional difference si that with subsampling we may need to do periodic density
estimation, to keep the rejection frequency from growing too large. But that’s not necessary
just to perform a particular update at the end of a Monte Carlo block.

14It probably makes most sense to do this if our supervised learning algorithm is one for
which we’re a priori guaranteed that such averaging gives the same answer as numerical
integration.

the update ratio, and therefore must be able to perform (some subset of) steps
(i) through (iv) above. Since by hypothesis we can evaluate qt−1(x) for any x,
and can evaluate the update ratio rqt−1,i(xi) (up to irrelevant proportionality
constants) for any such xi, we can evaluate qt(x) for any x. Therefore we
can perform step (i). We can also perform steps (ii) through (iv) using the
Monte Carlo samples of qt. Therefore we can perform parts (2) and (3) of our
subsampling procedure. So we can generate a sample of qt+1.

4 Sample correction to avoid the restriction to

product distributions

An important subsampling scenario is where one uses a single agent. In this
situation product distributions may still arise — in the density estimation algo-
rithm. Alternatively, other graphical models besides product distributions can
be used.

However many agents it is used with, subsampling is an example of a general
class of schemes that replace the usual update rules with sample-corrected
versions. This term refers to algorithms for forming a sample of a specified
distribution that is hard to sample directly (e.g., the distribution given by an
application of an update rule). These algorithms start by forming an IID sample
of some different proposal distribution. They then stochastically “correct” that
sample to get a sample of the specified distribution. That corrected sample
may then be used to update the proposal distribution, though this isn’t always
necessary.

This section first discusses other schemes for sample correction besides sub-
sampling, as well as how sample correction can be used even when has only a
single agent. It then discusses single agent subsampling, and many of its ad-
vantages, e.g., how it can be used to form IID samples of an arbitrary provided
distribution.

4.1 Sample correction without subsampling and general

comments

As mentioned above, there are numerous schemes besides subsampling that do
sample correction. As an example, say we are given a desired distribution p(x)
and a proposal distribution p̂(x, x′). Then the Metropolis-Hastings algorithm
[12] is a way to use p̂ to produce a random walk of which, in the ergodic limit, is
an IID sample of p. To use this algorithm one only needs to be able to sample
p̂(., x′) for any x′ and to evaluate p(x) at any x. In particular one does not
need to explicitly store p for all x. Just as with subsampling then, we can use
the Metropolis Hastings algorithm with any of our update rules to generate a
sample of the updated distribution, so long as we can evaluate all the terms
in the update equation. This allows us to produce the desired sample of the
updated distribution.

There can be drawbacks to such alternatives however. In particular, the
theory underpinning the Metropolis-Hastings algorithm assumes the proposal
distribution never changes in time, an issue that can be addressed only with
some difficulty [12]. In addition, subsampling has some advantages absent from
these alternative schemes (e.g., the use of the constant k to determine the degree
of sample correction, discussed below).

However it is done, sample-correcting the update rules may be helpful even
when the space of possible x is finite. For example, say the number of possible
xi is so large that there are many values xi = a that never occured in the most
recent block of Monte Carlo samples. So one way to fill in E(G | xi = a) for those
values is to use supervised learning to generalize from the pairs {(xi 6= a,G(x)}
that did occur in the data from that block. At the end of every such block,
conventional (non-sample-correcting) approaches would require that for every
a we evaluate and then update qi(a). This is not needed if one uses sample
correction however.

4.2 Single agent sample correction

Sample correction can be used even without product distributions, simply by
having the number of “agents” equal 1, with the full joint variable x being that
single agent’s move. This can be done for either finite or infinite number of
possible x’s.

In the scenario discussed above where there are multiple agents, the primary
purpose behind having Monte Carlo blocks of multiple timesteps is to gener-
ate sample data for the agents to input into supervised learning algorithms to
estimate their distributions E(FG | xi). (This is step (ii) in Sec. 3.5.) Those
estimated distributions are then used to help set the update ratios, which in
turn govern the sample correction for the next Monte Carlo block.

However with a single agent, to evaluate update ratios one doesn’t need to
estimate functions like “E(ln(FG) | xi)”. Such estimates of values of functions
are replaced with values ln(FG(x)), which are measured exactly, with no asso-
ciated estimation error. So there is no need for supervised learning algorithms
to acquire such conditional expectations. In general though we still need to
use statistical inference to estimate quantities like

∫

dx ln(FG(x)) (which is the
single-agent version of the more general quantity

∫

dxiEq(ln(FG) | xi)) and
Eq(FG). We also need such inference in general to estimate the entropy S(q)
and the related quantity

∫

dx ln(q(x)).
A major potential advantage of using a single agent arises when there are

strong couplings between the xi in G. As an example, consider finding the
product distribution

∏

i qi(xi) that best approximates some distribution p(x) ∝
e−G(x). Strong couplings in G may mean that the best possible such product
distribution approximation is not very good. So if one’s goal is to form an
accurate approximation of such a p, using product distributions has inherent
limitations. Similarly, if one is using a product distribution, strong couplings
in G can cause difficulties in attaining the goals behind the other update rules
discussed above.

To address such difficulties while still using multiple agents one can try using
graphical models of q that are higher order than product distributions. One
can also approximate terms in the Lagrangian as in the Bethe approximation,
etc. Such schemes typically obviate many of the computational advantages
inherent in product distributions however. Another approach, which maintains
the advantages of a product distribution but can accomodate strong coupling,
is to use a semi-coordinate transformation [10, 21]. Such transformations are
involved and subtle exercises however.

As an alternative, one can use sample correction with a single agent. In this
approach, instead of addressing the couplings in G by using a graphical model
as the approximation to e−G(x), they are addressed in the sample correction’s
density estimation algorithm (distribution estimation algorithm, in the case of a
finite x space). In general though, it is very straightforward to incorporate cou-
plings between the input variables (i.e., the xi) in density estimation algorithms.
This is in contrast to the case with graphical models.

Going to a single agent doesn’t affect the need for periodic density estima-
tion, to keep the rejection frequency in the subsampling from getting too large.
(Similar difficulties arise with other sample-correction algorithms.) The major
potential difficulty for using a single agent and sample correction is that it may
be difficult to generate an easily sampled density with a not too large rejection
frequency. However consider the case of a finite space of possible x. In this
scenario at the end of Monte Carlo block t one can form a product distribution
q(x) =

∏

i qi(xi) where the values of each qi(xi) are estimated by frequency
counts on the (kept) samples. Those samples were formed by exact sampling of
pt(x). Accordingly the qi(xi) are unbiased estimates of the marginals of pt(x).
In turn, the product of marginals is exactly the product distribution with min-
imal pq KL distance to pt.

So in this scheme each qi in the density estimate is set exactly as in the
conventional many-agent PC approach of minimizing pq KL distance to a target
distribution. However now that density estimate of pt is corrected via sample
correction.15

Note how much the subsampling approach simplifies in this scenario. Typ-
ically the updating of the density estimate is all that changes as the algorithm
generates more data. There is no computational sense in which one updates pt

between updates of the density estimate; one is simply generating more samples.
If the subsampling in this scheme results in a high rejection frequency, then

our q is a poor fit to pt. In such a case the conventional PC approach with many
agents would be expected to give a product distribution that poorly approxi-
mates the target distribution. Here that shortcoming of a poor approximation
doesn’t hold; instead though one has the shortcoming of many rejections in the
subsampling, and therefore must update the density estimate.

Note that with subsampling there is a natural way to control the degree to
which we’re using a (sample corrected) single agent versus a set of indepen-

15It is illuminating to compare this scheme to other schemes that interleave keep/reject
steps and multi-agent updating of product distributions, e.g., those described in Sec. 2.2.

dent (product distribution) agents. This is done by multiplying every rejection
probability by a constant k ∈ [0, 1] before deciding whether to keep or reject
a candidate sample point. k = 1 is full sample correction of the update rules,
and k = 0 corresponds to no correction at all, i.e., to just using the proposal
distribution. In particular, consider the case where there is a single agent but
the proposal distribution is a product distribution. For this case k = 0 means
the update rules are being used as the conventional manner to update product
distributions. In contrast k = 1 means we are using them to update the single
agent distribution.

To illustrate this, recall the update rule for iterative focusing of q̃ by mini-
mization of pq distance and a Heaviside focusing function, Θ(G < K). For this
focusing function the update rule Eq. 10 reduces to qt+1

i (xi) ∝ q̃(xi | G < K),
where for simplicity we can take q̃ = qt, the current distribution. In conven-
tional iterative focusing based on this rule we form a set of samples of qt. Of
those we only keep the ones with G < K. We then use those kept samples to
estimate each of the qt+1

i (xi), using regression or (in the case of countable x)
simple bin-counts.

Now consider how things change if we use subsampling based on a single
agent, for the same update rule of Eq. 10. Now our perspective changes; we
view the product distribution at time t as q̂t, our density estimate of the actual
desired distribution q̃. In other words, it is now a proposal distribution. We
start by forming a sample x of this distribution, and reject x if G(x) ≥ K, just
like in conventional iterative focusing. Next though we flip a biased coin, with
a bias based on the ratio q̂t(x)/qt(x). We then keep x only if that coin comes
up positive. Then we restart the process to get a new sample point. After
collecting a large number of points this way, we use them to update our density
estimate, i.e., to estimate each of the qt+1

i (xi). We do this using the exact same
regression or bin-counting scheme used in conventional iterative focusing.

The only difference between this and conventional use of iterative focusing
with product distributions is that with subsampling, we interject a step, of
flipping a biased coin. Accordingly, we can multiply the rejection bias of that
coin by some factor τ to tune between the two schemes. τ = 0 corresponds to
conventional iterative focusing, and τ = 1 is subsampling. Intermediate τ trade
off the efficiencies of the two algorithms.

Note that with a single agent the Maxent Lagrangian (for example) is a
convex function of one’s distribution. Its minimum is interior to the feasible
region, lying exactly at the desired p. This provides formal guarantees that are
absent if one does not use a single (sample-corrected) agent. In addition the
distribution that “best KL approximates a (distribution) function of G” is an
exact fit to that function. This is true whether one uses qp or pq KL distance
[7]. Accordingly “Nearest Newton” is now exactly Newton descent, with no
error introduced by a last step of setting q to minimize the pq KL distance to
the desired distribution. Moreover, many of the other update rules now become
identical. For example Brouwer updating becomes the same as minimizing pq
distance.

Furthermore, the fact that KL-based fits are exact with a single agent means

that by using a single agent the guarantees of Prop. 1 in [7] now apply to
iterative focusing. So we are formally guaranteed (up to sampling noise issues)
that each iteration of iterative focusing lowers E(G). (No such guarantees hold
if one does not use sample correction.)

Moreover, consider using a single agent and iterative focusing with a Boltz-
mann focusing function. In this situation, the focusing step becomes identical
to annealing the temperature in the parallel Brouwer update rule; iterative fo-
cusing update rules becomes identical to update rules based on the Maxent
Lagrangian. Note that this algorithm relies at its core on forming samples from
the proposal distribution q̂. There is no sense in which this scheme could be
used without such samples, by evaluating expressions in closed form and using
that to update some variables. This constrasts with direct application of an
update rule to an explicitly stored q, without any use of subsampling. Such
direct application of the update rules can theoretically be done without any
Monte-Carlo sampling at all. This is done by evaluating terms like E(G | xi)
directly, in closed form, from knowledge of q. (See [22] for an example of doing
this in practice.)

Finally, say we are given a distribution p∗(x) that we can evaluate for any
x via a black-box algorithm of some sort. Say we want to form a set of IID
samples of p∗. Traditionally one could use a scheme like Metropolis-Hastings to
do this. Subsampling with a single agent provides an alterative approach. This
alternative starts by defining G(x) ≡ −ln[p∗(x)]. So p∗ is just a Boltzmann
distribution over values of G. Accordingly, if we could find a (single-agent) q
that minimizes KL distance to a Boltzmann distribution over G for β = 1, and
generate IID samples of that q, we would have our desired IID samples of p∗.
This goal is exactly met if we use subsampling with a single agent for an update
rule based on KL distance to a Boltzmann distribution, once that update rule
reaches equilibrium for β = 1. (Note that at that minimum the KL distance to
the target distribution — which happens to equal p∗ — is just 0.)

5 Conclusion

A long-running difficulty with conventional game theory has been how to modify
it to accommodate the bounded rationality characterizing all real-world play-
ers. A recurring issue in statistical physics is how best to approximate joint
probability distributions with decoupled (and therefore far more tractable) dis-
tributions. It has recently been shown that the same information theoretic
mathematical structure, PC, underlies both issues. This structure provides a
formal model-independent definition of the degree of rationality of a player and
of bounded rationality equilibria. This pair of papers extends previous work on
PC by introducing new computational approaches to effectively find bounded
rationality equilibria of common-interest (team) games.

References

[1] D. H. Wolpert, “Factoring a canonical ensemble,” 2003, preprint cond-
mat/0307630.

[2] ——, “Bounded rational games, information theory, and statistical
physics,” in Complex Engineering Systems, D. Braha and Y. Bar-Yam,
Eds., 2004.

[3] W. Macready, S. Bieniawski, and D. Wolpert, “Adaptive multi-agent sys-
tems for constrained optimization,” 2004, technical report IC-04-123.

[4] C. F. Lee and D. H. Wolpert, “Product distribution theory for control of
multi-agent systems,” in Proceedings of AAMAS 04, 2004.

[5] S. Bieniawski and D. H. Wolpert, “Adaptive, distributed control of con-
strained multi-agent systems,” in Proceedings of AAMAS 04, 2004.

[6] S. Bieniawski, D. H. Wolpert, and I. Kroo, “Discrete, continuous,
and constrained optimization using collectives,” in Proceedings of 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Albany, New York, 2004, in press.

[7] D. H. Wolpert, “Finding bounded rational equilibria part 1: Iterative fo-
cusing,” in Proceedings of the International Society of Dynamic Games
Conference, 2004, 2004, in press.

[8] S. Airiau and D. H. Wolpert, “Product distribution theory and semi-
coordinate transformations,” 2004, submitted to AAMAS 04.

[9] D. H. Wolpert and S. Bieniawski, “Distributed control by lagrangian steep-
est descent,” in Proceedings of CDC 04, 2004.

[10] ——, “Adaptive distributed control: beyond single-instant categorical vari-
ables,” in Proceedings of MSRAS04, A. S. et al, Ed. Springer Verlag, 2004.

[11] N. Antoine, S. Bieniawski, I. Kroo, and D. H. Wolpert, “Fleet assignment
using collective intelligence,” in Proceedings of 42nd Aerospace Sciences
Meeting, 2004, aIAA-2004-0622.

[12] D. H. Wolpert and C. F. Lee, “Adaptive metropolis hastings sampling using
product distributions,” in Proceedings of ICCS 04, 2004.

[13] D. H. Wolpert, “What information theory says about best response, binding
contracts, and collective intelligence,” in Proceedings of WEHIA04, A. N.
et al, Ed. Springer Verlag, 2004.

[14] D. H. Wolpert, K. Tumer, and J. Frank, “Using collective intelligence to
route internet traffic,” in Advances in Neural Information Processing Sys-
tems - 11. MIT Press, 1999, pp. 952–958.

[15] D. H. Wolpert and K. Tumer, “Optimal payoff functions for members of
collectives,” Advances in Complex Systems, vol. 4, no. 2/3, pp. 265–279,
2001.

[16] ——, “Collective intelligence, data routing and braess’ paradox,” Journal
of Artificial Intelligence Research, 2002, to appear.

[17] D. H. Wolpert, “Theory of collective intelligence,” in Collectives and the
Design of Complex Systems, K. Tumer and D. H. Wolpert, Eds. New
York: Springer, 2003.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[19] D. Wolpert, K. Tumer, and E. Bandari, “Intelligent coordinates for search,”
2002, submitted.

[20] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd ed.).
Wiley and Sons, 2000.

[21] W. Macready and D. H. Wolpert, “Distributed constrained optimization
with semicoordinate transformations,” 2005, submitted.

[22] ——, “Distributed constrained optimization with semi-coordinate transfor-
mations,” 2004, submitted.

